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Background and Motivation

● MLIR based AI compilers have become popular to bridge the gap between 
high-level machine learning framework operators (GEMMs, softmax, etc.) and 
low-level, target-specific machine code.

○ Sophisticated compiler passes are required however to map high level MLIR operators to low 
level LLVM and target specific code

● There has also been a recent push to incorporate more non-traditional compiler 
operations into MLIR dialects (e.g. MPI Dialect for comms)

○ Defining operations directly in the language allows operation specific lowering
○ This becomes important when MLIR level passes are used to reordering instructions above the 

LLVM IR
■ Software pipelining, shared memory pre-fetching, etc.

● Recent advancements in Large Language Model (LLM) architecture and 
optimization (e.g. DeepSeek) have shown that the ability to reorder instructions 
on the IR/Assembly level can have outsized performance impacts



Triton MLIR Based ML Compiler 

Triton is popular MLIR based framework for 
implementing high-performance AI 
operators (GEMMs, Flash Attention, etc) on 
GPUs (AMD and Nvidia)

● Complex MLIR passes implement 
operator specific transforms to achieve 
high performance without requiring 
users to be GPU architecture experts

● This has shifted performance many 
optimizations from kernel writers to 
compiler and framework developers



Optimizing Code on Modern GPUs

● The latest generation of data center GPUs (H100, MI300) make use 
of specialized functional units specifically for acceleration of matrix 
multiplication (Tensor/Matrix cores)

● To make optimal use of these features requires complex software 
abstractions

○ Warp specialization (Nvidia)
○ Wave priority and scheduling (AMD)
○ Loop pipelining and instruction reordering

● Optimizing these SW implementations requires fine-grained, 
intra-kernel tracing capabilities that do not break the complex 
optimization passes



Custom Instrumentation: Beyond CUPTI & RocTracer

● Limitations of existing backends
○ CUPTI and RocTracer are powerful but may not fully address our needs

● Why custom instrumentation?
○ Cross-platform support: One engine for multiple GPUs/accelerators

○ Reusable utilities: Simplify development across kernels

○ Extended metrics: Capture data unavailable through vendor tools

● Examples
○ Memory heat map generation to visualize performance bottlenecks

○ Tailored instrumentation for asynchronous matrix multiplication instructions
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Proton Runtime
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Usage
● Python API

○ Instrument Triton Python code

● Proton dialect instrumentation

○ Generic for any backend

○ Compiler engineers can specify recording start/end scopes

● ProtonGPU dialect instrumentation

○ Generated by the instrumentation backend

■ Measuring specific hardware/software metrics



Proton Language
The Proton Dialect Language augments the existing Triton Language



Python API

● proton.start(backend=”instrumentation”, mode=”...”)

○ Patches all Triton functions with the given mode

○ Each mode specifies

■ What metrics to profile

■ Sampling modes

■ Collection granularity

○ Example: mma_cycle::[warpgroup::circular::all]

■ [warpgroup::circular::all] is optional



Proton Dialect MLIR Level Instrumentation

Start recording

Stop recording

proton.record start/end “scope_name”



ProtonGPU Dialect Instrumentation

● proton_gpu.global_scratch_alloc
○ Obtain a pointer from the global profile data

● proton_gpu.init_buffer_index
○ Initial an index for recording records in the local buffer

● proton_gpu.read_counter
○ Read a performance counter value at this point

● proton_gpu.circular_store
○ Store a record in the local buffer and increase the local index

● proton_gpu.finalize
○ Copy the local buffer to the global profile data



ProtonGPU to LLVM Lowering
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Use Cases
● Develop a custom “mode”

○ Fine-grained latency measurement for Triton IRs

■ Software pipelining

■ Warp specialization

● Associate profile data with compiler to build your own tools

○ Profiler-guided optimization

○ Collect and visualize values distribution of tensors



Triton FA-GEMM Memory-Compute Overlapping 
▪ Nvidia CUTLASS library for high performance GEMMs uses warp specialization and a 

producer/consumer model to overlap memory and tensor core ops
▪ Named barriers and warp specialization type features

▪ AMD Composable Kernels (CK) high performance GEMM library uses explicit setting of wave 
priority and compiler scheduling intrinsics

▪ Incorporating and optimizing of these methods into Triton requires advanced intra-kernel timing 
correlated with warp/wave, SM/CU IDs
▪ Compiler based framework allows us to insert timestamps correlated to upper level data flow 

operations (e.g. loops and accumulate ops) and profile within the MLIR level passes and 
framework.

▪ Using intra-kernel tracing we can identify areas to reorder instructions within the loop to get 
optimal overlapping of data movement (e.g. loads and stores) and compute (e.g. matrix 
instructions).
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Questions?


