
The Proton Dialect: An MLIR Dialect For AI Compiler GPU Kernel Profiling

The Proton Dialect: An MLIR
Dialect For AI Compiler GPU

Kernel Profiling
Keren Zhou (kzhou6@gmu.edu) Corbin Robeck (corbin.robeck@amd.com)

Yuanwei Fang (fywkevin@meta.com)

mailto:kzhou6@gmu.edu
mailto:corbin.robeck@amd.com
mailto:fywkevin@meta.com

Background and Motivation

● MLIR based AI compilers have become popular to bridge the gap between
high-level machine learning framework operators (GEMMs, softmax, etc.) and
low-level, target-specific machine code.

○ Sophisticated compiler passes are required however to map high level MLIR operators to low
level LLVM and target specific code

● There has also been a recent push to incorporate more non-traditional compiler
operations into MLIR dialects (e.g. MPI Dialect for comms)

○ Defining operations directly in the language allows operation specific lowering
○ This becomes important when MLIR level passes are used to reordering instructions above the

LLVM IR
■ Software pipelining, shared memory pre-fetching, etc.

● Recent advancements in Large Language Model (LLM) architecture and
optimization (e.g. DeepSeek) have shown that the ability to reorder instructions
on the IR/Assembly level can have outsized performance impacts

Triton MLIR Based ML Compiler

Triton is popular MLIR based framework for
implementing high-performance AI
operators (GEMMs, Flash Attention, etc) on
GPUs (AMD and Nvidia)

● Complex MLIR passes implement
operator specific transforms to achieve
high performance without requiring
users to be GPU architecture experts

● This has shifted performance many
optimizations from kernel writers to
compiler and framework developers

Optimizing Code on Modern GPUs

● The latest generation of data center GPUs (H100, MI300) make use
of specialized functional units specifically for acceleration of matrix
multiplication (Tensor/Matrix cores)

● To make optimal use of these features requires complex software
abstractions

○ Warp specialization (Nvidia)
○ Wave priority and scheduling (AMD)
○ Loop pipelining and instruction reordering

● Optimizing these SW implementations requires fine-grained,
intra-kernel tracing capabilities that do not break the complex
optimization passes

Custom Instrumentation: Beyond CUPTI & RocTracer

● Limitations of existing backends
○ CUPTI and RocTracer are powerful but may not fully address our needs

● Why custom instrumentation?
○ Cross-platform support: One engine for multiple GPUs/accelerators

○ Reusable utilities: Simplify development across kernels

○ Extended metrics: Capture data unavailable through vendor tools

● Examples
○ Memory heat map generation to visualize performance bottlenecks

○ Tailored instrumentation for asynchronous matrix multiplication instructions

Dialect Overview

Triton

TritonCPU

TritonAMDGPU TritonNvidiaGPU

TritonGPU Third-Party

LLVM

Proton Dialects

Triton

TritonCPU

TritonAMDGPU TritonNvidiaGPU

TritonGPU Third-Party

LLVM

Proton

ProtonGPU

Proton Runtime

Proton DialectProton Runtime

Proton Frontend

Triton

register

Proton Backend

CUPTI RocTracer Proton
Instrumentation

Vendor-specific APIs
LLVM IRGPU buffer

profile data

setenv

fillcopy

Usage
● Python API

○ Instrument Triton Python code

● Proton dialect instrumentation

○ Generic for any backend

○ Compiler engineers can specify recording start/end scopes

● ProtonGPU dialect instrumentation

○ Generated by the instrumentation backend

■ Measuring specific hardware/software metrics

Proton Language
The Proton Dialect Language augments the existing Triton Language

Python API

● proton.start(backend=”instrumentation”, mode=”...”)

○ Patches all Triton functions with the given mode

○ Each mode specifies

■ What metrics to profile

■ Sampling modes

■ Collection granularity

○ Example: mma_cycle::[warpgroup::circular::all]

■ [warpgroup::circular::all] is optional

Proton Dialect MLIR Level Instrumentation

Start recording

Stop recording

proton.record start/end “scope_name”

ProtonGPU Dialect Instrumentation

● proton_gpu.global_scratch_alloc
○ Obtain a pointer from the global profile data

● proton_gpu.init_buffer_index
○ Initial an index for recording records in the local buffer

● proton_gpu.read_counter
○ Read a performance counter value at this point

● proton_gpu.circular_store
○ Store a record in the local buffer and increase the local index

● proton_gpu.finalize
○ Copy the local buffer to the global profile data

ProtonGPU to LLVM Lowering

TritonAMDGPU TritonNvidiaGPU

TritonGPU

LLVM

ProtonGPU

Generic
Instrumentation

Specific Mode

ProtonGPU
Op to LLVM

Target-specific
Op to LLVM

Use Cases
● Develop a custom “mode”

○ Fine-grained latency measurement for Triton IRs

■ Software pipelining

■ Warp specialization

● Associate profile data with compiler to build your own tools

○ Profiler-guided optimization

○ Collect and visualize values distribution of tensors

Triton FA-GEMM Memory-Compute Overlapping
▪ Nvidia CUTLASS library for high performance GEMMs uses warp specialization and a

producer/consumer model to overlap memory and tensor core ops
▪ Named barriers and warp specialization type features

▪ AMD Composable Kernels (CK) high performance GEMM library uses explicit setting of wave
priority and compiler scheduling intrinsics

▪ Incorporating and optimizing of these methods into Triton requires advanced intra-kernel timing
correlated with warp/wave, SM/CU IDs
▪ Compiler based framework allows us to insert timestamps correlated to upper level data flow

operations (e.g. loops and accumulate ops) and profile within the MLIR level passes and
framework.

▪ Using intra-kernel tracing we can identify areas to reorder instructions within the loop to get
optimal overlapping of data movement (e.g. loads and stores) and compute (e.g. matrix
instructions).

Fine-grained GPU Trace

Timeline

G
P

U
 P

ro
ce

ss
or

s

Questions?

