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AI Applications



AI System Software Stack
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Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d

AI Code Transformation Workflow
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Understanding Hidden Issues is Difficult

● Cross stack performance issues

○ Framework is not able to schedule/fuse operators

● CPU-GPU interaction

○ GPUs wait for CPUs or communication

● Compiler fail to generate optimal code

○ Deep learning compilers are not perfect

Framework

Operator

Devices



Profiling Tools

● Linux Perf/gprof

○ CPU cycles, cache misses, and other hardware metrics

● HPCToolkit

○ CPU and GPU profiling with static binary analysis

● Nsight Systems/Intel VTune/AMD RocTracer

○ Profiling GPU events



Profile and Trace Views



Debugging Tools

● GDB/LLDB/PDB

○ Supports step-through execution, breakpoints, and watchpoints

● Valgrind

○ Memory leak detection

● CUDA-GDB

○ GPU instruction and memory inspection



Outline

● Introduction

● DeepContext

● Triton

○ Profiler

○ Interpreter

○ Visualizer

● Ongoing Work



DeepContext

@PyTorchConference’24



A Cross-Platform and Cross-Framework Profiler

● GPU vendor-provided tools cannot be applied across platforms

○ Nsight Systems

○ RocTracer

● Framework native tools cannot be applied across frameworks

○ PyTorch profiler

○ JAX profiler



A Context-Aware Profiler

● DeepContext obtains contexts from multiple-sources and concatenates them 

together to support informed decisions

○ Python

○ Framework

○ C++/C

○ GPU API

○ GPU device



Implementation



Case Study

● PyTorch without context correlation



Case Study

● PyTorch with context correlation



Triton



Triton

● A Python-like language

● A JIT compiler

● A PyTorch backend

● A set of MLIR dialects

● An organization

● A community



Why Triton?



Why Triton?

Presenter Notes
Presentation Notes
 A fun fact is that Triton is named after the nucleus of the Tritium atom, which is a nod to (nuclear) fusion. You can interpret the new logo as such: two red neutrons, one gray proton, and an electron orbiting around



Triton Modules

Trit on

P rofile r

In-tree Modules

AMD NVIDIA

Int e rpre t e r

Out -of -tree Modules

Tools

Backend

Int e lLanguage

CP U

Trit on-shared  
(acce le ra t or)

…



Triton Language

● Python-like language designed for high flexibility and performance in deep 

learning applications

○ Support tensor interface similar to PyTorch

○ Uses Python-like syntax

● Compared to CUDA/ROCm, Triton simplifies GPU programming

○ Only requiring knowledge that a kernel is divided into multiple blocks (Triton programs)

○ Most underlying details are handled by the compiler



A Simple Triton Program

Kerne l decorat or

P rogram m ing m ode l

Creat ion ops

Mem ory ops

z: dim0 x dim1 = x: dim0 x dim1 + y: dim0 x dim1



Triton Profiler



Proton (A Profiler for Triton)

● Provide a quick, intuitive, and simple way to check kernel performance

○ Open source

○ Multiple vendor GPUs

○ Flexible metrics collection

■ Hardware metrics

■ Software metrics

○ Call path profiling



Call Path Profiling

P yt hon Cont ext

Shadow Cont ext



Proton vs Nsight Systems vs Nsight Compute
Tool Nsys NCU P rot on

Overhead Up t o  3 x Up t o  10 0 0 x Up t o  1.5 x 

P rofile  s ize Large Large Tiny (<1MB)

P rofiling 
t arge t s NVIDIA GP Us , CP Us NVIDIA GP Us NVIDIA and  AMD GP Us

Granularit y Kerne ls Kerne ls  and  ins t ruct ions Kerne ls  and  ins t ruct ions

Met rics
GP U t im e

GP U ut iliza t ion
CP U sam ples

A com ple t e  se t  of m e t rics  
from  hardware  count e rs

GP U t im e
GP U ins t ruct ion 

sam ples
Use r-de fined  m e t rics

Trit on 
hooks N/ A N/ A Support



User Interface

● Lightweight source code instrumentation

○ Profile start/stop/finalize

○ Scopes

○ Hooks

● Command line

○ python - m proton main.py

○ proton main.py



Start/Stop/Finalize Profiling

● Profile only interesting regions

○ proton.start(profile_name: str) - > session_id: int

○ proton.finalize()

● Skip some regions, but accumulate to the same profile

○ session_id = proton.start(...)

○ proton.deactive(session_id)

○ … # region skipped

○ proton.activate(session_id)



Scopes

● A user-defined region with semantic information

○ Initialization

○ Forward

○ Backward

● with proton.scope(name)



Met rics

● Hardware metrics
○ Come from profiling substrates (e.g., CUPTI)

■ Kernel time

■ Instruction samples

● User-defined metrics 
○ Come from users

■ Flops

■ Bytes

■ Tokens



Triton Hook

● A way to compute and associate metrics with each Triton kernel launch
○ @triton.jit(launch_metadata=metadata_fn)

● metadata_fn is a callback function that
○ Takes three input arguments

■ Grid
■ Metadata

● warps, stages, shared
■ Args

○ Returns a dictionary containing
■ Renamed kernel name
■ Other metric names and values



Instruction Sampling

● For large functions, we need fine-grained insights about which 

lines/IRs/instructions are expensive

● Instruction sampling is an experimental feature we’re developing to support 

this goal

○ It’s called pc sampling using NVIDIA’s terminology



Instruction Sampling

● Sample an instruction on each active GPU SM every N cycles

● Each instruction is associated with a stall reason if available

○ Why the instruction was not issued

● “Low overhead” with regard to each kernel’s GPU time

● Available on NVIDIA, AMD and Intel GPUs



Viewer

● proton - viewer a call path visualization tool

● Load json data into pandas

● Render it on terminal using hatchet

○ LLNL-Hatchet: A flexible package for performance data analysis

○ Hatchet can also convert the format into other formats such as flamegraph

● proton - viewer - h for more information

https://llnl-hatchet.readthedocs.io/en/latest/


Case Study: Matmul

● We use scopes to annotate

○ Matmul shapes: matmul_M_N_K

○ Autotuned configurations: <autotune>

● We use hooks to annotate

○ Grid dimensions

○ Number of warps

○ Number of stages



Case Study: Matmul



Triton Interpreter



Debugging Triton Programs is Still Not Easy

● Launch parallel programs instances

○ kernel[(x, y, z,)](params…)

● Calculate offsets

○ tl.arange(0, N)[None, :] // H * stride

● Access multi-dimensional tensors with masks and others

○ tl.load(offsets, masks, others)



Triton Interpreter

● A debugger that allows users to debug Triton programs as if they were 

debugging standard Python programs on the CPU

○ Attach pdb to step through each statement interactively

○ Print tensor values as multidimensional arrays for better visualization

○ Serialize the execution of multiple Triton programs for easier debugging



Frontend without the Interpreter

m at h.py

built in

core .py

rand .py s t andard .py

libdevice .py

jit

cus t om

sem ant ic.py

Trit on 
P yt honCode  Generat or

Trit on IR

IR Builde r

AST Visit

Backend

IRs  and  Binary



Frontend with the Interpreter

m at h.py

built in

core .py

rand .py s t andard .py

libdevice .py

jit

cus t om

sem ant ic.py

Trit on 
P yt honInt e rp re t e r

Int e rpre t e r Builde r

Exec

Num py Execut or



Case Study: Vector Addition



Case Study: Vector Addition Without Interpreter



Case Study: Vector Addition With Interpreter



Triton Visualizer

@SIGCSE’25



Education

● How to educate the next-generation engineers and scientists on Triton 

knowledge?

● Parallel programming is hard

○ Though Triton has simplified the abstraction

● Performance optimization and correctness debugging are even harder



Key Ideas

● Collect the trace of the interpreter

○ Easier than GPU binary / compiler instrumentation

○ No need to access real GPUs

● Design an interactive visualizer

● Design a set of questions for students to practice



Triton-Viz Workflow

● From @triton_viz.trace to visualization reports



Triton Puzzles

● Teach you how to use Triton from first principles in an interactive fashion
● Collaborated with Sasha Rush @ Cornell Tech

Triton-Puzzles/README.md at main · srush/Triton-Puzzles

https://github.com/srush/Triton-Puzzles/blob/main/README.md


Triton-Viz Visualization



Triton-Viz 2.0 Demo-1

Credits to Daniyal Khan

http://drive.google.com/file/d/1uEJo5537KJFgz_IHbmK6riN0OL98PORG/view


Triton-Viz 2.0 Demo-2

http://drive.google.com/file/d/1EhxN-sCpDfoyZfZbEj0qcZTdyU_r9MyV/view


Ongoing Work



Proton Instrumentation

● CUPTI and RocTracer are powerful but may not fully address our needs

● Why custom instrumentation?

○ Cross-Platform Support: One engine for multiple GPUs/accelerators

○ Reusable Client Interface: Simplify development across different platforms

○ Extended Metrics: Capture data unavailable through vendor tools

● Collaborating with Meta (Yuanwei Fang) and AMD (Corbin Robeck)



Fine-grained GPU Trace

Timeline
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Proposed Solution

Proton DialectProton Runtime

Proton Frontend

Triton

register

Proton Backend

CUPTI RocTracer Proton 
Instrumentation

Existing Work
LLVM IRbuffer

profile data

setenv



Performance Analyzer

● Incorporate multi-level IR analysis into proton

● Associate compile time warnings with runtime performance metrics

● Provide actionable optimizations for users

● Provide problem diagnostic insights for compiler developers



Proposed Solution

Python 
Source

TritonGPU 
IR

GPU 
Binary Proton 

Profile

proton

IR Analyzer

Performance
warningstriton

Profile Analyzer

Optimization Suggestions



Summary



Put it Together



Q&A
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